If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+2x+8=40
We move all terms to the left:
2x^2+2x+8-(40)=0
We add all the numbers together, and all the variables
2x^2+2x-32=0
a = 2; b = 2; c = -32;
Δ = b2-4ac
Δ = 22-4·2·(-32)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{65}}{2*2}=\frac{-2-2\sqrt{65}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{65}}{2*2}=\frac{-2+2\sqrt{65}}{4} $
| 2x+48+5x-81+x+22+99=360 | | 18j+11=6j+35 | | 2n+9=2+6n+10-5n | | 2w-9-6=5w+9 | | 5x+9=5x+4 | | 10-7h=-10-9h | | +7x-4=3+8x | | -4+6w=7w | | 180=1n+10 | | 2m-5=m-3 | | 7b+-3b-9=-17 | | 3q+3=9q+3 | | −2(11−12x)=−4(1−6x) | | 6t=-10+5t | | 9+t=48 | | 4=-t+1 | | -4b+7=-9 | | 80x+2x+30=180 | | -7n+9=-8n | | -8-8g=-10g+8 | | -7x+3(3x+1)=-2x+9 | | 20x+63+4x+41+3x+89+86=360 | | 15=15+b | | 11x-12=14-3x | | 4n=6=42 | | z-14=28 | | 20p+p-18p+3=12 | | 4=g/5 | | 1-6+10r=7r-8 | | (u-2)/6+(2u+5)/15=3 | | (2x+2)x+2=40 | | 65+75+x=90 |